Machine-Learning Prediction Model for Personalized Urinary Tract Infection Care in Children
The study will develop and implement a validated machine learning model to optimize voiding cystourethrogram timing and use for diagnosing vesicoureteral reflux (VUR) in children, aiming to reduce the significant health and economic impacts of VUR and recurrent febrile urinary tract infections (fUTIs) by standardizing practices, minimizing unnecessary procedures, and ensuring timely diagnosis for those at highest risk, ultimately seeking to prevent renal injury from fUTIs.