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Structured Abstract 
Purpose: This study sought to enhance the accuracy of linkage methods for integrating patient data 
across data sources. The primary objectives were to compare methods, evaluate methodological 
enhancements, and assess the impact of data standardization and normalization on match accuracy. 

Scope: The study used four gold standard matching datasets containing approximately 62,000 records 
from patient matching use cases. Patient records from the Indiana Network for Patient Care (INPC), with 
over 47 million patient records from 100 clinical sources, were used to evaluate methods. The study 
encompassed various use cases, including deduplication of HIE patient registry records, linking public 
health client registries, newborn data deduplication, and linking vital records to ascertain death status. 

Methods: The research applied linkage methods to clinical data and assessed the impact of several 
enhancements, including handling missing data, considering conditional dependence, incorporating 
nearness comparison, and applying data standardization. Manual review of record pairs was conducted 
to establish a gold-standard match status. 

Results: Key findings included the value of token frequency in matching, the importance of accounting 
for conditional dependence, and the benefits of data standardization and similarity measures. Handling 
missing data using the missing at random method significantly improved match accuracy, particularly for 
sensitivity and F score. 

Conclusion: This research sought to improve linkage accuracy to integrate fragmented patient data, 
employing probabilistic approaches, considering missing data, and utilizing various enhancements. 
These findings highlight the potential for more accurate patient data integration in healthcare settings. 

Keywords: probabilistic and deterministic linkage, conditional dependence, data standardization, 
missingness, match accuracy. 

Purpose 
The objective of this study was to implement emerging recommendations for matching data 
enhancements in combination with novel matching algorithms enhancements and measure the resulting 
matching accuracy improvements. Such evidence-based outcomes can inform future formulations of the 
national patient identity management strategy. We accomplished this goal with the following specific 
aims: 

Specific Aim 1: We implemented three general classes of recommended matching data enhancements 
and measured the resulting matching accuracy improvements. Using the four gold standard patient 
matching datasets, each of the 3 recommendations were evaluated independently and in combination by 
comparing enhanced matching data results to baseline matching results derived from the original 
unmodified datasets. 

Specific Aim 2: We implemented four novel matching algorithm enhancements and assess the resulting 
matching accuracy improvements. Using the four gold standard patient matching datasets, we assessed 
the effectiveness of each algorithm modification independently and in combination by comparing 
enhanced matching algorithm results to baseline matching results derived from the original unmodified 
Fellegi-Sunter algorithm. 



Specific Aim 3: We measured the matching accuracy improvements resulting from using combinations of 
(a) three best practice matching policy recommendations and (b) four novel matching algorithm 
enhancements. Using the four gold standard patient matching datasets, we assessed the effectiveness of 
each remaining combination not evaluated in aims 1 and 2 by comparing enhanced matching results to 
baseline matching results derived from the original unmodified dataset and unmodified algorithm. 

Scope 
Significance 
1. Health care data is fragmented. Patient information is fragmented across the US health care system. 
Each encounter with a hospital, health system, outpatient provider, clinic, pharmacy, long term care 
provider, or public health agency, generates information. Problematically, this information is stored in 
numerous independent clinical repositories with no single unique identifier to enable an integrated 
comprehensive patient record1,2 . Even within single large institutions, like a health system or hospital, 
the internal billing systems, laboratory information systems, and electronic health records are 
independent silos of information using different identifiers, which may or may not exist in other 
systems. This fragmented information risks patient safety, hinders data aggregation for clinical decision 
support, prevents physicians from having comprehensive medical information, deters effective 
population health approaches, creates inefficiencies by delaying care, limits public health reporting, and 
severely reduces the utility of electronic patient information for clinical research. Accurate patient 
matching, which is defined as identifying records for the same person across separate systems, is 
necessary for the delivery of safe and effective health care and to realize the nations’ cost and quality 
improvement goals3,4 .   

2. Improved algorithms and enhanced matching data can decrease data fragmentation and improve 
matching accuracy. Optimizing patient matching algorithms and enhancing data used for matching are 
our best approach to integrating patient records across disparate systems. Matching approaches such as 
a national patient identifier (NPI) or biometric identifiers are infeasible due to political, financial, and 
operational barriers.   While an NPI can improve matching efficiency and accuracy5,6 , implementation is 
estimated to cost between $1.5 and $11 billion over several years. More importantly, ongoing privacy 
and security concerns related to the widespread sharing of patient information have hindered the 
implementation of an NPI7 . Congress suspended federal funding for an NPI due to privacy concerns in 
1999 and although states and other entities are not prohibited from implementation, there is no 
political interest in NPIs in the US. Likewise, biometric approaches such as fingerprints, iris patterns, 
facial shapes and vein patterns can significantly improve matching8 . However, biometrics are expensive 
and biometric identifiers can evolve9 . Voice patterns can change gradually with age or abruptly with 
illness; fingerprints can degrade (disappear) with time; retinal patterns can change in patients with 
conditions that affect eye, such as diabetes. Additionally, privacy concerns remain over the co-opting of 
biometric identifiers for additional non-health care uses such as fingerprint use by law enforcement 
agencies10 . Biometrics are not currently widely deployed in the US health care system primarily due to 
cost and perceived privacy concerns. While these approaches may improve the matching process, they 
are unlikely to be true solutions in the near-term and are still not panaceas. Robust patient matching 
methods would still needed be needed to account for uneven adoption across the health care system, to 
link historical data, to link episodes of care when NPI cards were lost or biometric scanners were down, 
and to identify inevitable duplicate patients. 



3. Evidence-based approaches for optimizing matching algorithm accuracy are needed. Patient 
matching approaches include a spectrum of increasingly sophisticated methodologies: deterministic, 
fuzzy match, and statistical/machine learning methods. The simplest approach for matching records 
compares selected data elements such as name, birth date, gender and Social Security number using 
exact or deterministic rules11,12 . Although these algorithms are generally simple to implement and 
achieve excellent specificity, they are inflexible to changing data characteristics and can lack 
discriminating power. Intermediate algorithms employ fuzzy logic to address nicknames, typographical 
errors13,14 , and implement ad-hoc scoring systems using simple heuristics. These represent a reasonable 
middle ground for performance and implementation complexity, but lack the flexibility of more 
advanced algorithms. The most sophisticated patient matching approaches leverage statistical and 
machine learning models to establish match status, and these more complex methods generally yield 
greatest accuracy. Example models include Bayesian algorithms15 , maximum entropy algorithms16 , and 
the Felligi-Sunter (FS) maximum likelihood algorithm17 .   With its ability to improve accuracy as more 
data is presented, and adapt as the data characteristics evolve, the FS algorithm is a core component of 
many probabilistic matching algorithms in use today. 

4. Evidence-based approaches for enhancing data used for matching are needed. While algorithms can 
be quite effective when implemented properly, algorithms must be paired with high quality 
discriminating data to maximize matching accuracy. The evidence base guiding optimal implementation 
for combinations of algorithm is lacking18 . There have been few formal, comprehensive evaluations of 
consensus-based matching strategy recommendations using real-world, heterogeneous health care 
data. Studies often use data derived from small numbers of sources, sources with similar data 
characteristics, or similar workflows. Further, some evaluations are biased by including human 
supervision to train and maintain algorithm accuracy. The amount of human supervision required to 
achieve the level of accuracy described in published studies may be infeasible for most health care data 
repositories that capture hundreds of thousands of new clinical records daily. 

5. Expert panel recommendations for matching are emerging. The recognized lack of consistent 
matching practices has generated multiple best practice recommendations, but no consensus. Several 
organizations including the Agency for Healthcare Research and Quality (AHRQ)19 , the Health 
Information Management Systems Society (HIMSS)20 , the Bipartisan Policy Center21 , the eHealth 
Initiative22 , the Markle Foundation23 , and the Office of the National Coordinator for Health IT (ONC)24,25 

have either promoted or published best practice recommendations for patient matching. However, 
there is a paucity of peer-reviewed research specifically addressing the feasibility, effectiveness, and 
generalizability of implementing specific recommendations. Supporting this notion, a March 2014 U.S. 
Government Accountability Office (GAO) report evaluating HIE and patient matching notes, “HHS 
developed an electronic health information exchange strategy that includes principles to address key 
challenges but lacks specific prioritized actions.”26   

6. Lack of evidence for the effectiveness of expert recommendations can hinder adoption. With an 
incomplete evidence base unable to more firmly support existing guidance, stakeholders may be less 
inclined to pursue approaches with unclear value, or they may implement methods that upon further 
study prove to be less effective and generalizable than initially perceived. Thus, our proposal motivated 
by the dubious state of the strategy for patient identity management in the US. We recognize that 
approaches for consistent, accurate and efficient patient identification are needed for a fully functional 



learning health care system, yet questions remain as to whether we can achieve acceptable, consistent 
matching performance5,6 .   

7. We evaluated best-practice matching data recommendations and novel algorithm improvements in 
the context of the nation’s most comprehensive health information exchange. The Indiana Network 
for Patient Care (INPC) carries over 5 billion pieces of clinical data, for approximately 27.5 million unique 
patient registrations, covering approximately 13.4 million unique patients across more than 100 health 
care institutions. Using this laboratory we compared baseline matching accuracy to matching results 
that implement various combinations of a) best practice recommendations for matching data, and b) 
algorithm enhancements. 

Innovation 
This work is innovative because it is designed to evaluate the independent and combined effects of two 
distinct but related strategies, both necessary for advancing the state-of-the-art in patient matching: a) 
best practice recommendations for data curation policy and process improvements, and b) matching 
algorithm enhancements. 

1. Matching data enhancements. Regarding best practice recommendations for data curation policy and 
process improvements, we implemented and evaluate data preprocessing enhancements, including: 
matching data standardization, augmenting data to increase discriminating power, and evaluating and 
improving data quality. These best practice recommendations have not been evaluated in the context of 
a large, heterogeneous health information exchange.   

2. Matching algorithm enhancements. In addition to policy and process enhancements, our 
experienced data analytics team also implemented and evaluate novel enhancements to commonly 
used patient matching methods. We propose to extend the current research evidence base by applying 
four novel, generalizable approaches to improve the accuracy of patient matching. The novel 
approaches draw on probabilistic and machine learning methods and include: extending patient 
matching models to leverage value-specific frequencies for key matching fields, incorporating similarity 
metrics into agreement comparators, accounting for agreement correlation among fields, and 
accommodating missing data.   

3. Matching scenarios highlighting different health contexts. The same matching approach may not be 
optimal for all situations because the data available in different matching scenarios exhibit varying 
degrees of discriminating power and data quality.   In this study, we evaluated patient matching 
strategies in the context of four use cases with significant clinical, public health, and research 
implications. For each use case we used manually reviewed gold standard patient matching data sets 
derived from the HIE.   All data sets have supported prior peer reviewed patient matching research. A 
brief description of each data set follows, and is further described in Table 1.   

4. Newborn screening27,28 . Not all infants are appropriately screened for harmful or potentially fatal 
disorders that are otherwise unapparent at birth29 . Although public health authorities can link vital 
records data with newborn screening results to identify unscreened infants, such processes may be 
delayed and some cases may remain undetected by this process30 . To improve identification of 
unscreened infants, we developed an algorithm to link records from Indiana’s statewide newborn 
screening registry to the INPC31 . For this analysis we extracted newborn screening lab records and INPC 



records for patients less than 1 month of age, randomly sampled and manually reviewed over 11,000 
record pairs to create a gold standard analytic data set.   

5. Linking hospital patient registries32,33 . We examined our matching enhancements in the context of 
linking enterprise master patient registries from hospital systems that share overlapping patient 
populations. As hospital systems are increasingly incentivized to partner through ACOs and other value-
based purchasing models34,35,36 , linking their records for common patients was a critical first step in more 
coordinated and lower cost care. To routinely evaluate the HIE matching accuracy we have created a 
randomly sampled, manually reviewed data set containing over 16,000 record pairs for health systems 
sharing the same patient.   

6. Removing duplicates public health client registry18,37 . Public health registries help track the health 
trends of populations and support many public health activities. Data in these registries derive from 
multiple public health service areas and exhibit varying data quality. We de-duplicated the complete 
patient registry for the Marion County Health Department (MCHD), Indiana’s largest public health 
department. De-duplication is a class of record linkage where a data set is linked to itself to identify 
potential duplicate records. To evaluate the accuracy of the de-duplication process, we manually 
reviewed over 17,000 record pairs to create a gold standard evaluation set.   

7. Ascertaining death status38,39 . We examined matching enhancements in the context of social security 
death data linked to many participating organizations in the INPC. Accurately and comprehensively 
updating health records with patients’ accurate vital status is critical to robust clinical quality 
measurement, public health reporting requirements, and high quality clinical research. To evaluate 
these matching approaches, we linked INPC hospital registry records to the Social Security Death Master 
file (SSDMF) and manually reviewed over 12,000 randomly sampled record pairs to create a validated 
data set for analysis.   

Overall, this project was innovative because we used unparalleled health information exchange data to 
evaluate the effectiveness of recommended but poorly understood matching strategies. We conducted 
this evaluation in the context of four clinical and public health use cases that are of current and growing 
importance to improving health care quality and outcomes while reducing costs. 



Table 1: List of gold standard, peer reviewed record linkage datasets for us in evaluation.   The variety 
of clinical and population health scenarios represent important clinical use cases, and also reflect a 
spectrum of data characteristics that pose challenges to accurate linkage, including varying data 
quality and discriminating power.   

Dataset Linkage Description Data Characteristics Use Case Value 
Newborn Statewide public health 

newborn screening laboratory 
results liked to HIE clinical 
records 

Missing names (infants), richer 
parent demographics, few unique 
identifiers, varying completeness, 
and standardization 

Public health and pediatric clinical 
stakeholders seek to improve 
neonatal care management   

Health System Patient registries from 
different health systems that 
share overlapping patient 
populations 

Varying completeness and 
standardization, unique 
identifiers present. 

Health systems seek to improve 
care coordination, population 
health management   

Public Health Public health population 
registry covering a large 
metropolitan area   

Inaccurate and incomplete 
patient data, few unique 
identifiers.   

Public health seeks to improve 
data quality for more effective 
public health management   

Data Registry National social security death 
data linked to all participating 
HIE organizations 

Unique identifiers (SSN) present, 
high completeness. 

Public and health systems seek to 
improve quality of mortality data 
to assess care outcomes; improve 
tumor registry data   

8. AHRQ Priority Populations. With nearly total state population coverage, the INPC catchment 
population includes women, children, racial and ethnic minorities, populations with special health care 
needs (chronic illness, disabilities, and end of life care needs), the elderly, low-income, inner-city, and 
rural populations.   

Methods   
Using randomly sampled, manually reviewed gold standard datasets derived from four distinct clinical 
patient matching use cases, we evaluated matching accuracy improvements resulting from 
implementing a) best practice recommendations for data curation policy and process improvements, 
and b) matching algorithm enhancements through three specific aims.  For each aim we used the 
traditional FS patient matching algorithm to measure the relative improvements in matching sensitivity, 
specificity, positive predictive value (PPV), and the area under the ROC curve (AUC) compared to 
baseline matching approaches without incorporation of the specific matching enhancement. Each 
matching enhancement was applied to all four gold standard matching datasets. Table 2 highlights the 
project’s overall approach. 

In aim 1 we studied matching accuracy improvements resulting from enhanced matching data 
generated using three best-practice policy recommendations for data curation and standardization. 
Using the four gold standard patient matching datasets, each of the 3 recommendations were evaluated 
independently and in combination by comparing enhanced matching data results to baseline matching 
results derived from the four original unmodified gold-standard datasets. 

In aim 2 we evaluated matching accuracy improvements resulting from four novel matching algorithm 
innovations. Using the four gold standard patient matching datasets, we assessed the effectiveness of 
each algorithm modification independently and in combination by comparing enhanced matching 
algorithm results to baseline matching results derived from the original unmodified FS algorithm. 



In aim 3 we evaluated matching accuracy improvements resulting from combining both best practice 
recommendations and algorithm enhancements. Using the four gold standard patient matching 
datasets, we assessed the effectiveness of each remaining combination not evaluated in aims 1 and 2 by 
comparing enhanced matching results to baseline matching results derived from the original unmodified 
dataset and unmodified algorithm. We excluded any best practice recommendations and algorithm 
enhancements that failed to showed significant improvement in aims 1 and 2. 

Table 2: Breakdown of analyses by matching enhancement type and specific aim. ‘D’ refers to combinations of the three “Data” 
enhancements. ‘A’ refers to combinations of the four “Algorithm” enhancements. Each cell represents a combination of ‘Data’ 
and ‘Algorithm’ enhancements to be analyzed. Each analysis (represented by a cell in the table) will measure sensitivity, 
specificity, positive predictive value, and AUC using 4 validated matching datasets. Each cell represents 16 analyses (4 accuracy 
measures x 4 datasets). The maximum number of analyses will be: ((8 rows x 16 columns)- 1) x 16 analyses/cell = 2,032 
analyses. Aim 1 will have (7 cells x 16 analyses/cell) = 112 analyses. Aim 2 will have (15 cells x 16 analyses/cell) = 240 analyses, 
and Aim 3 will have up to (105 cells x 16 analyses/cell) = 1,680 analyses. 

DA
TA

 E
N

HA
N

CE
M

EN
TS

ALGORITHM ENHANCEMENTS 
NONE A1 A2 A3 A4 A1,A2 A1,A3 A1,A4 A2,A3 A2,A4 A3,A4 A1,A2,A3 A1,A2,A4 A1,A3,A4 A2,A3,A4 A1,A2,A3,A4 

NONE AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 AIM 2 

D1 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 

D2 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 

D1,D2 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 

D1,D3 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 
D2,D3 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 

D2,D3 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 

D1,D2,D3 AIM 1 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 AIM 3 

Specific Aim 1: Implement three general classes of recommended matching data enhancements and 
measure the resulting matching accuracy improvements.   

Incomplete and incorrectly attributed patient information can lead to suboptimal and inappropriate 
care40,41 Best-practice recommendations exist to improve patient matching algorithms and approaches. 
However, despite the development of these recommendations, best-practice suggestions for improving 
patient matching performance are still very much in the emergent stage, and their collective (and 
individual) effectiveness has yet to be determined. This aim assessed which current set of 
recommendations creates the greatest improvements in patient-matching algorithm performance. 

We hypothesized that implementing the proposed best practices for matching, including (a) adding more 
matching fields, (b) standardizing data, and (c) improving data quality will improve matching sensitivity, 
specificity, positive predictive value, and AUC. To test this hypothesis, we evaluated each 
recommendation separately and in combination using previously validated gold-standard matched data 
sets derived from our rich HIE. This evidence meaningfully informed next steps in developing a national 
patient matching strategy. 

Justification. Influential policy and industry organizations representing the interests of health 
information technology and patient safety have developed policy recommendations for improving 
patient matching processes. Agencies including AHRQ19 , HIMSS20 , the Bipartisan Policy Center21 , the 
eHealth Initiative22 , the Markle Foundation23 , and ONC24,25 have either promoted or published best 
practice recommendations for patient matching. These recommendations vary and none have been 
formally evaluated. The recommendations for improving patient matching include three distinct 



approachess24: (a) adding more matching fields to increase discriminating power; (b) adopting uniform 
field-specific data standardization methods to ensure consistency; and (c) assessing and improving 
matching field accuracy and completeness to ensure adequate data quality. We describe our approach 
to implementing these recommendations below. 

(a) Additional matching fields can improve discriminating power. Additional independent data elements 
that are routinely available (but not commonly used) can increase discriminating power of matching 
algorithms. We added candidate matching fields to our validated matching data sets. Additional fields 
include (1) middle name, (2) mother’s and father’s first and last names, (3) mother's maiden name, and 
(4) email address to our existing matching data sets. While these data elements are not routinely used 
for matching, they are present within transactions shared among our HIE stakeholders42 . With over 100 
hospitals transmitting over 1 million clinical transactions daily to the INPC, we are well positioned to 
study these candidate fields across a diverse set of health care institutions. For example, a previously 
published analysis revealed that parents’ first and last name were present but not used for matching for 
58% of records in a random sample of newborns27 , which suggests these fields have the potential to 
improve matching accuracy. 

(b) Data format standardization methods to ensure consistency. While different systems may use similar 
matching fields, they’re often stored in inconsistent formats. Social Security Number, address, 
telephone, and even names may be formatted differently (e.g., “(317) 555-1212” versus “3175551212”, 
“O’Brien” versus “Obrien”), resulting in less accurate matching. The ONC recommendations for 

improving data consistency and normalization 
point to field-specific standardization 
processes, including the Council for 
Affordable Quality Healthcare’s (CAQH) name 
standards rule43 , X12 transaction set 
standards for demographics44 , International 
Organization for Standardization (ISO) 
formats45 , and United States Postal Service 
(USPS) address standards46 . We also applied 
the International Telecommunication Union 
(ITU) E.123 recommendations for telephone 
and email address standardization47 . We 
applied these standardization rules to our 
existing matching data sets as described in 
Table 3). 

Table 3: Specific data format standardization 
recommendations mapped to existing and additional 
fields. 

Additional Fields CAQH X12 ISO USPS ITU-T 
Mother’s Last Name X X 
Mother’s First Name X X 
Father’s Last Name X X 
Father’s First Name X X 
Mother’s Maiden Name X X 
Email Address X 

Existing Fields 
Last Name X X 
First Name X X 
Middle Name X X 
Gender X 
Date of Birth X 
Address X 
City X 
State X 
Zip Code X 
Telephone X 

(c) Improved data quality can improve 
matching accuracy. Accurate patient matching 
requires not only robust algorithms but also 

high quality data48 . Missing fields, automatically entered “default” values, typographical errors,
misspellings, and false information hinder data quality and are associated with inaccurate matching. 
Strategies to improve data quality often focus on data entry process improvement, data validation, and 
data cleaning techniques49 . Because our patient matching laboratory includes participants from over 100 
heterogeneous organizations, it is impractical to deploy and study widespread patient registration and 
data entry process improvement. Therefore, for this particular recommendation we focused our efforts 



on evaluating the effectiveness of implementing (1) HIE-based data validation and (2) data cleaning 
methods, where our team has prior success developing and deploying a health care data quality analysis 
framework50 , as well as implementing technical processes to improve health data quality51,52 . Validating 
data quality and cleaning data can improve matching accuracy by identifying specific data shortcomings 
to be addressed for a given data source48 . Our approaches for data validation and data cleaning are 
described below. 

Data validation rules were identified by analyzing the idiosyncratic characteristics of patient matching 
fields. Default values are defined (e.g., name “John Doe”; date of birth “1/1/1901”) and such instances 
are invalidated for use in patient matching to avoid false positive matches. Additionally, certain person 
traits can be validated using simple rules. Examples of such rules include: month of birth is limited to 
one of twelve distinct values; day of birth is limited to one of thirty-one values; names may contain the 
letters A-Z, hyphens, and single quotes, but no other punctuation and no numbers. SSN's and telephone 
numbers should contain no more than six nines or six zeros in a row. All traits not complying with 
specific rules are marked as invalid and are not used for patient matching.  Invalid address components, 
including street number and name, city, state and ZIP code can be identified using more sophisticated 
rules implemented in various software packages53 . 

Data cleaning methods can correct minor data errors and impute missing values.  Slightly misspelled 
names can be mapped to valid closely matching names using string nearness measures (e.g., “Snith” 
“Smith”)33 and nicknames mapped to canonical names (e.g., “Robbie”  “Robert”)[REF]. Both the 
misspelled and corrected names may be used for matching. Address errors such as misspellings, 
typographical errors, and nonstandard abbreviations can be similarly corrected using address cleaning 
software53 . Further, a significant proportion of missing gender values can be imputed using first names 
that are closely aligned with one gender (e.g., “Mary” implies “female”; “John” implies “male”). Missing 
values can also be derived from historical values maintained within the HIE. When data (e.g., mother’s 
maiden name) is missing for a current demographic record (e.g., the patient may not have provided it 
during the most recent visit), a prior historical record with that value may be retrieved. We developed 
and implemented software to provide data quality validation and data cleaning methods using the 
framework described in Table 4. 

Table 4: Approach to applying data validation and data cleaning methods to existing and new 
matching fields. 

Additional Fields Data Validation Data Cleaning: Connect Minor Errors Data Cleansing: Impute Missing Data 
Mother’s Last Name Remove Default Values Close Match Historical 
Mother’s First Name Remove Default Values Close Match/Nickname Standardize Historical 
Father’s Last Name Remove Default Values Close Match Historical 
Father’s First Name Remove Default Values Close Match/Nickname Standardize Historical 
Mother’s Maiden Name Remove Default Values Close Match Historical 
Email Address Remove Default Values/Apply Rules Historical 
Existing Fields 
Last Name Remove Default Values Close Match 
First Name Remove Default Values Close Match/ Nickname Standardize 
Middle Name Remove Default Values Close Match Historical 
Gender Apply Rules Impute from First Name 
Date of Birth Remove Default Values/Apply Rules 
Address Remove Default Values/Apply Rules Address Correction Software Historical 
City Remove Default Values/Apply Rules Address Correction Software Historical 
State Remove Default Values/Apply Rules Address Correction Software Historical 
Zip Code Remove Default Values/Apply Rules Address Correction Software Historical 
Telephone Remove Default Values/Apply Rules Historical 



Research Design. The relative improvements of each of the above best-practice policy 
recommendations assessed individually and in combination using each of four validated test data sets. 
We assessed matching accuracy (including sensitivity, specificity, PPV, and AUC) before and after 
implementing standardization and quality improvement processes for both existing and new fields. We 
implemented each of the three recommended data enhancements, applied the Felligi-Sunter 
probabilistic algorithm to the enhanced data, and compared the matching accuracy of each 
enhancement individually and collectively to baseline matching performance. Table 2 highlights the 
specific analyses for Aim 1, where ‘D1’ represents adding matching fields, ‘D2’ represents data 
standardization methods, and ‘D3’ represents data validation and cleaning methods. Each of the seven 
combinations were applied to the four gold standard matching datasets, for a total of 28 enhanced 
matching analysis datasets. We performed four accuracy analyses (sensitivity, specificity, PPV and AUC) 
per dataset for a total of 112 analyses. 

Analysis. We measured the effect of best-practice recommendations (both individually and combined) 
on patient matching using sensitivity, specificity, PPV, and AUC for each dataset. Sensitivity, specificity, 
and PPV were evaluated using proportions and 95% confidence intervals. To account for the clustering 
effect of multiple methods applied to the same record pair and assess the effects of individual and 
combined data enhancements on matching performance, we performed a marginal logistic regression 
using generalized estimating equations54,55 . For each metric we included main effects, two-way 
interactions, and three-way interactions of the three enhancements in the model to allow differential 
effects of a factor as other factors vary. The standard errors of the accuracy measures were calculated 
using the robust sandwich variance estimation methods. The point estimate and the 95% confidence 
interval of the AUC, as well as the comparison of multiple AUCs, were performed using a nonparametric 
approach56 . Comparison of these accuracy metrics between the four unmodified baseline datasets and 
the 28 analysis data sets corresponding to the seven possible combinations of the three enhancements 
and four gold standard baseline data sets were performed using a multiple comparison approach with a 
Bonferroni adjustment. 

Sample Size & Power. Sample sizes for the four gold standard record matching datasets ranged from 
11,000 to 17,000. These sample sizes provided at least 80% power to detect a minimum of 2% difference 
in the AUCs of two correlated ROC curves, assuming one AUC was 80% and the other was at least 82% 
and the prevalence of true matches lied within the range of 5% to 95%, commonly seen in record linkage 
applications. These two ROC curves were derived based on the two matching algorithms using 
combinations of the three enhancements. We assumed a moderate correlation of 50% between 
matching status determined by the two matching algorithms, recognizing that the power increases as 
the matching algorithms produces more correlated results. 

Specific Aim 2: Implement four novel matching algorithm enhancements and measure the resulting 
matching accuracy improvements. 

Current matching approaches often fail to take advantage of the full discriminating power present in 
matching data. Aggregate and inferred information (or metadata) are routinely available, but largely 
unused in matching algorithms. The objective of this aim was to determine the impact of various 
categories of metadata on patient matching algorithm accuracy. We hypothesized that incorporating 
metadata into matching algorithms would measurably improve matching accuracy with well-defined 
metrics stated below. 



Justification. A primary strategy for improving matching algorithm performance is to add more data 
elements on which to match records57 . Intuitively finding matches for “John Public” is enhanced by 
adding data (e.g. “John Quincy Public”). While adding more matching data fields seems logical, it has 
several practical limitations. Problematically, additional data elements are not always readily available. 
New data elements are often costly to collect due to required personnel training and system 
modifications, and are not easily incorporated into existing data collection workflows. 

Approach. While capturing new data may be challenging, information about existing data are routinely 
available. The term metadata refers to aggregate or inferred information about existing data, and can 
include 1) field frequencies, 2) similarity measures, 3) dependency relationships, and 4) missing data. 
Although metadata have the advantage of requiring no additional collection efforts by health care 
organizations, metadata traditionally have been underutilized for patient matching. Nonetheless, 
metadata represents a potential source of additional data that can provide additional discriminating 
power, ultimately improving match accuracy. Below we proposed four approaches for extending current 
matching algorithms to incorporate several types of metadata to improve patient matching accuracy. 

Field-specific String Frequencies. Matching algorithms often use binary inputs (0/1) indicating whether 
corresponding fields agree. However, these models often do not recognize that agreement may convey 
varying levels of evidence depending on the specific field value. For example, last name agreement on 
“Smith” may convey less match certainty than last name agreement on “Harezlak”. To capture the 
varying discriminating power of field-specific values, we extended the base FS model by incorporating an 
extension to the expectation maximization (EM) algorithm, which is a related statistical method 
commonly used to parameterize the FS model58 . Rather than using a binary variable for agreement (1) 
and non-agreement (0), we used a multinomial representation by stratifying agreements into multiple 
categories based on individual field strings. Specifically, assume K unique strings for field 𝑤𝑤 (e.g., patient 
last name) in files of patient records A and B. Combining these with the non-agreement result, there are 
a total of K+1 possible categories for the given field. Assume that   

𝑚𝑚𝑗𝑗 𝑗𝑗 = 𝑃𝑃 (𝑎𝑎 𝑖𝑖 𝑗𝑗 = 𝑏𝑏𝑖𝑖 𝑗𝑗 = 𝑤𝑤𝑗𝑗 , 𝑎𝑎 𝑖𝑖 ∈ 𝐴𝐴 , 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵|𝑀𝑀𝑖𝑖 = 1), 𝑢𝑢𝑗𝑗 𝑗𝑗 = 𝑃𝑃 (𝑎𝑎 𝑖𝑖 𝑗𝑗 = 𝑏𝑏𝑖𝑖 𝑗𝑗 = 𝑤𝑤𝑗𝑗 , 𝑎𝑎 𝑖𝑖 ∈ 𝐴𝐴, 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵|𝑀𝑀𝑖𝑖 = 0), 

where 𝑎𝑎𝑖𝑖 𝑗𝑗  and 𝑏𝑏𝑖𝑖𝑗𝑗  are the values in field j for the ith record pair (𝑎𝑎𝑖𝑖  , 𝑏𝑏𝑖𝑖 ) and 𝑀𝑀𝑖𝑖 = 0 or 1 is true match 
status (𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛, 𝑗𝑗 = 1, 2, … , 𝐽𝐽 , 𝑘𝑘 = 1, 2, … , 𝐾𝐾 ). The match prevalence is denoted as 𝜌𝜌 = 𝑃𝑃 (𝑀𝑀𝑖𝑖 = 1). 
After combining fields into multiple categories based on distribution of occurrence frequencies, we used 
the EM algorithm to estimate the parameters and compute the posterior probability, which was used to 
determine the match status of record pairs. 

Similarity Measures. The extension of field-specific string frequencies to the FS model as described 
above assumes exact field agreement. However, it is not always optimal to compare two strings 
character-by-character due to typographical error or spelling variations. Rather than treating agreement 
as binary variable, string comparators measure similarity between two strings by producing a 
continuous value (ranging from 0 to 1)33,59,60 . Higher values signify greater similarity, with 1 indicating 
exact match. A common approach is to dichotomize this continuous similarity measure at a pre-specified 
cut point. However, incorrectly chosen similarity thresholds can produce inaccurate match results. 
Identifying optimal similarity thresholds requires assessment of thresholds across multiple fields, and 
dichotomizing a continuous variable decreases the overall discriminating power61,62 . We incorporated 
continuous similarity measures into our base FS matching model using the multinomial approach 



proposed for incorporating string occurrence frequency. Fields with minimal information content such 
as gender and middle initial yield binary similarity measures (0/1). Thus, we only applied this method to 
fields with sufficient information content (as measured by Shannon’s entropy to yield a heterogeneous 
distribution of similarity measures. The EM algorithm developed for the multinomial data for the 
extended FS model was similarly used to obtain parameter estimates. 

Similarity measures and frequency weights can be incorporated into the model both as two separate 
attributes of the same field, or combined by adjusting the similarity measure by multiplying the 
minimum of the inverse of frequency weights 𝑔𝑔(𝑤𝑤𝑗𝑗 ), and scaling the modified similarity interval to (0, 
1). Table 6 illustrates the combined 
adjusted similarity measure calculation. 
Note that last name “Harezlak” is 
relatively rare in both files, and so 
modified similarities of pairs 3 and 4 stay 
high; however, for the more common 
name “Smith”, the similarities of record 
pairs 1 and 2 are decreased. The 
posterior probability of being a match is 
decreased for record pairs 1 and 2, but 
increased for record pairs 3 and 4. 

Table 6: An example combining both string similarity and token 
frequency 

Last Names Similarity pA pB Modified 
Similarity 

1 Smith, Smith 1.000 0.9 0.8 0.222 
2 Smith, Smth 0.800 0.9 0.001 0.178 
3 Harezlak, Harezlak 1.000 0.1 0.2 1.000 
4 Harelak, Harezlak 0.875 0.001 0.2 0.875 
5 Smith, Harezlak 0.000 0.9 0.2 0.000 

Conditional Dependence Among Fields Using Random Effects. The base FS model assumes that field 
agreements are statistically independent (i.e., not correlated) given a record pair’s true match status. 
For example, for most matching algorithms, knowing that two records agree on (for example) family 
name does not inform whether other fields (such as birth date) will agree as well. However, in real-
world applications this assumption of conditional independence is often violated. For example, 
agreement status for first name and gender fields are statistically correlated, e.g., two persons with a 
first name of ‘Anna’ are likely agree on gender (‘Female’). As a result, most matching algorithms fail to 
leverage such correlations to produce better classification rules28,63 . 

To address conditional dependence among fields, we proposed to model record-pair characteristics by 
introducing an unobserved random variable 𝑇𝑇 into our extended FS models. The random variable 𝑇𝑇 is 
assumed to follow a standard normal distribution. Given the true match status and the random variable 
𝑇𝑇 , the agreement pattern is independent across fields. That is, 

𝑃𝑃 (𝑎𝑎 𝑖𝑖 𝑗𝑗 = 𝑏𝑏𝑖𝑖 𝑗𝑗 = 𝑤𝑤𝑗𝑗 , 𝑎𝑎 𝑖𝑖 ∈ 𝐴𝐴, 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵|𝑀𝑀𝑖𝑖 = 1, 𝑇𝑇 = 𝑡𝑡 ) 

= Φ (𝑐𝑐𝑗𝑗 1𝑗𝑗 − (𝑎𝑎𝑗𝑗 1 + 𝑏𝑏𝑗𝑗 1 𝑡𝑡)) − Φ (𝑐𝑐𝑗𝑗 1,𝑗𝑗−1 − (𝑎𝑎𝑗𝑗 1 + 𝑏𝑏𝑗𝑗 1 𝑡𝑡)), 

for matches and for non-matches, we have 
𝑃𝑃 (𝑎𝑎 𝑖𝑖 𝑗𝑗 = 𝑏𝑏𝑖𝑖 𝑗𝑗 = 𝑤𝑤𝑗𝑗 , 𝑎𝑎 𝑖𝑖 ∈ 𝐴𝐴, 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵|𝑀𝑀𝑖𝑖 = 0, 𝑇𝑇 = 𝑡𝑡 ) 

= Φ (𝑐𝑐𝑗𝑗 0𝑗𝑗 − (𝑎𝑎𝑗𝑗 0 + 𝑏𝑏𝑗𝑗 0 𝑡𝑡)) − Φ (𝑐𝑐𝑗𝑗 0,𝑗𝑗−1 − (𝑎𝑎𝑗𝑗 0 + 𝑏𝑏𝑗𝑗 0 𝑡𝑡)), 

where 𝑤𝑤1 , 𝑤𝑤2 , … , 𝑤𝑤𝐾𝐾 are ordered from the smallest to the largest based on g(wk ), −∞ = 𝑐𝑐𝑗𝑗 𝑗𝑗 ,−1 ≤ 
𝑐𝑐𝑗𝑗 𝑗𝑗 0 = 0 ≤ 𝑐𝑐𝑗𝑗 𝑗𝑗 1 ≤ ⋯ ≤ 𝑐𝑐𝑗𝑗 𝑗𝑗 𝐾𝐾 ≤ 𝑐𝑐𝑗𝑗 𝑗𝑗 ,𝑗𝑗+1 = ∞ (𝑚𝑚 = 0, 1) and Φ is the cumulative distribution function 
of the standard normal distribution. Integrating over the random effect 𝑇𝑇 , we compute the m- and u-
probabilities as follows: 
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We obtained parameter estimates by maximizing the log-likelihood function via the EM algorithm64 . 
When a similarity measure is included we evaluated the random effects model using two approaches. 
We analyzed the effect of treating similarity measure and frequency weights as (a) two separate 
attributes of the model and (b) combining the two as a single feature. When large numbers of unique 
strings are present for a given field, instance data is sparse and the model is heavily parameterized. Thus 
we parsimoniously combined strings with similar frequency of occurrences to reduce the number of 
categories and hence the number of parameters. In addition, we evaluated simplifying the random 
effects approach by focusing on the subset of fields that violate conditional dependence. 

Accommodating Missing Data. Data necessary for matching patients is often missing from clinical 
records for many reasons: values may be unknown, non-existent (a person with no middle name), or 
omitted due to privacy concerns. For example, pediatricians often don’t collect mother’s date of birth, 
even though the information improves record management, because their focus is on the child65 . 
Missing fields decrease discriminating power and consequently hinder matching accuracy66,67,68 . We 
evaluated three missing data situations. 

a. The most restrictive missing data model is the missing completely at random (MCAR), which 
assumes that the missingness of a variable is independent of all observed or unobserved 
variables. In this situation parameter estimates are unaffected when record pairs with missing 
data are excluded. However, omitting missing data may lower the precision of estimated 
parameters due to fewer record pairs being used.   

b. Missing at random (MAR) is a less restrictive yet more realistic missing data model that assumes 
the missingness of a variable is independent of the unobserved data, although it can depend on 
other observed variables. In many situations, MAR represents a reasonable missing data 
assumption in record linkage.   

c. Missing not at random (MNAR) asserts that the missingness of a variable is related to the 
unobserved variable itself. For example, if middle name is absent because it does not exist, a 
missing value from both records of the record pair can provide information that the two records 
belong to the same person. 

Missing record linkage fields are typically handled by excluding records with missing values on one of the 
linking fields when estimating match weights69 , or considering the field’s agreement pattern as a 
disagreement37. Excluding records with missing values is indicated only when data are MCAR. Thus, 
excluding records may bias parameters estimates when the MCAR assumption is violated, leading to 
inaccurate results. Alternatively, treating missing data as disagreement assumes MNAR, which may yield 
inaccurate results when the MNAR assumption that all missing data represents disagreement is 
incorrect. 

We evaluated the effectiveness of incorporating missing data into our base FS probabilistic linkage 
model. Representing the FS model using a log-linear approach, we assumed four example fields denoted 
as A, B, C, and D, and the match status is denoted as M. The FS model can be rewritten as: 



𝑙𝑙𝑙𝑙𝑔𝑔(𝜋𝜋 𝑖𝑖 𝑗𝑗 𝑗𝑗𝑖𝑖 𝑗𝑗 ) = 𝜆𝜆 + 𝜆𝜆𝑖𝑖 𝐴𝐴 + 𝜆𝜆𝑗𝑗 
𝐵𝐵 + 𝜆𝜆𝑗𝑗 

𝐶𝐶 + 𝜆𝜆𝑖𝑖 𝐷𝐷 + 𝜆𝜆𝑗𝑗 
𝑀𝑀 + 𝜆𝜆𝑖𝑖 𝑗𝑗 

𝐴𝐴𝑀𝑀 + 𝜆𝜆𝑗𝑗 𝑗𝑗 
𝐵𝐵𝑀𝑀 + 𝜆𝜆𝑗𝑗𝑗𝑗 

𝐶𝐶𝑀𝑀 + 𝜆𝜆𝑖𝑖𝑗𝑗 
𝐷𝐷𝑀𝑀 , 

where 𝜋𝜋 𝑖𝑖𝑗𝑗  𝑗𝑗𝑖𝑖𝑗𝑗  denotes the probability that a record pair has agreement pattern with ith level of field A, jth 

level of field B, kth level of field C, lth level of field D, and mth level of match status (𝑖𝑖 , 𝑗𝑗 , 𝑘𝑘 , 𝑙𝑙 , 𝑚𝑚 = 0,1). 
Here 𝜆𝜆 is determined by the constraint ∑𝜋𝜋 𝑖𝑖 𝑗𝑗 𝑗𝑗𝑖𝑖 𝑗𝑗 = 1 and other 𝜆𝜆′𝑠𝑠 are parameters satisfying the typical 
constraints for log-linear models. By using symbols that list the highest order terms for each variable, 
representation of the FS model is simplified as (AM, BM, CM, DM).   

With no missing data, the four binary agreement status variables in fields A through D yield a 
contingency table with 24 = 16 unique patterns. With missing data, we introduced an indicator for each 
field having missing values and create an expanded contingency table including both complete and 
partially observed data. Assuming that fields A and B have missing values, we created two missing 
indicators, 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 , and combined them with the four fields to create an expanded table with 
26 elements. We then incorporated additional terms related to 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 into the log-linear model to 
accommodate missing data.   

This model used an expanded contingency table enables us to evaluate missing data mechanisms. In the 
above example, MCAR implies that missing indicators 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 are independent of all variables and 
hence the model can be written as (AM, BM, CM, DM, MA, MB). When data are MAR, the additional 
terms for MAR models will only include associations among 𝑀𝑀𝐴𝐴 , 𝑀𝑀𝐵𝐵 and C, D. Further, the MNAR models 
will include additional terms with associations among 𝑀𝑀𝐴𝐴 , 𝑀𝑀𝐵𝐵 and A, B, or M. 

For each unique observed agreement pattern in the expanded table, the probability of this pattern is 
𝜌𝜌𝜋𝜋 𝑖𝑖 𝑗𝑗 𝑗𝑗𝑖𝑖 1 + (1 − 𝜌𝜌)𝜋𝜋 𝑖𝑖 𝑗𝑗 𝑗𝑗𝑖𝑖 0. For patterns not directly observed (e.g., field A is missing), the inferred 
probability is 𝜌𝜌𝜋𝜋 +𝑗𝑗 𝑗𝑗𝑖𝑖 1 + (1 − 𝜌𝜌)𝜋𝜋 +𝑗𝑗 𝑗𝑗𝑖𝑖 0, where 𝜋𝜋 +𝑗𝑗 𝑗𝑗𝑖𝑖 𝑗𝑗 = 𝜋𝜋 0𝑗𝑗 𝑗𝑗𝑖𝑖 𝑗𝑗 + 𝜋𝜋1𝑗𝑗 𝑗𝑗𝑖𝑖 𝑗𝑗 . The log-likelihood for the log-
linear model is then 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙 = ∑𝑓𝑓 ⋅ 𝑙𝑙𝑙𝑙𝑔𝑔(𝜋𝜋 ), where 𝑓𝑓 and 𝜋𝜋 are the observed frequency and probability of 
the agreement patterns, and the sum of the log-likelihood is taken over all unique agreement patterns 
in the expanded table.   

Our approach above described handling the missing data similarly assumes conditional independence of 
field agreement. This assumption can be relaxed by including interactions among fields in the model. In 
addition, when similarity measure or frequency weights of a field are available, the proposed 
multinomial model was used. 

Research Design. We evaluated matching accuracy improvements resulting from implementing the four 
novel matching algorithm innovations using sensitivity, specificity, PPV, and AUC. Using the four gold 
standard patient matching datasets, we assessed the effectiveness of each algorithm enhancement 
independently and in combination by comparing enhanced matching algorithm results to baseline 
matching results derived from the original unmodified FS algorithm. Table 2 highlights the 15 specific 
algorithm combinations and 240 analyses to be evaluated. Table 2 highlights the specific analyses for 
Aim 2, where ‘A1’ represents field-specific frequency enhancements, ‘A2’ represents similarity 
enhancements, ‘A3’ represents methods for conditional dependency enhancements, and ‘A4’ 
represents incorporating missing data models. Each of the 15 algorithm combinations were applied to 
the four gold standard matching datasets, for a total of 60 matching analysis datasets. We performed 
four accuracy analyses (sensitivity, specificity, PPV and AUC) per dataset for a total of 240 analyses.   



Analysis. We measured the effect of matching algorithm enhancements (both individually and 
combined) on patient matching using sensitivity, specificity, PPV, and AUC. Sensitivity, specificity, and 
PPV was evaluated using proportions and 95% confidence intervals. To account for the clustering effect 
of multiple methods applied to the same record pair and assess the effects of individual and combined 
algorithm enhancements on matching performance, we performed a marginal logistic regression using 
generalized estimating equations54,55 . For each metric we included main effects, two-way interactions, 
three-way, and four-way interactions of the four algorithm enhancements in the model to allow 
differential effects of a factor as other factors vary. The standard errors of the accuracy measures were 
calculated using the robust sandwich variance estimation methods. The point estimate and the 95% 
confidence interval of the AUC, as well as the comparison of multiple AUCs, were performed using a 
nonparametric approach56 . Comparison of these accuracy metrics between a) the unmodified FS 
algorithm applied to the four gold standard data sets and b) the 15 algorithm combinations applied to 
the four algorithm enhancements were performed using a multiple comparison approach with a 
Bonferroni adjustment. 

Sample Size & Power. Sample sizes for the four gold standard record matching datasets ranged from 
11,000 to 17,000. These sample sizes provided at least 80% power to detect a minimum of 2% difference 
in the AUCs of two correlated ROC curves, assuming one AUC was 80% and the other was at least 82% 
and the prevalence of true matches lied within the range of 5% to 95%, commonly seen in record linkage 
applications. These two ROC curves were derived based on the two matching algorithms using 
combinations of the four enhancements. We assumed a moderate correlation of 50% between matching 
status determined by the two matching algorithms, recognizing that the power increases as the 
matching algorithms produces more correlated results. 

Specific Aim 3: Measure the matching accuracy improvements resulting from using combinations of 
three best practice matching policy recommendations and four novel matching algorithm 
enhancements. 

This aim seeked to evaluate which combinations of process and technical enhancements produce the 
greatest matching accuracy improvements. Our proposed work recognized that improving match 
accuracy requires both process and technical innovation. While matching accuracy improvements may 
be partially achieved by either independently enhancing matching data using three best-practice policy 
recommendations or enhancing matching methods using four novel algorithm innovations, we 
hypothesized that combining both best practice recommendations and algorithm innovations would 
maximize improvements in matching sensitivity, specificity, positive predictive value, and AUC. 
Conversely, we further hypothesized that not all combinations of process and technical enhancements 
would result in significant improvements in matching accuracy. 

Justification. Because implementing process and technical innovations both have ongoing associated 
operational costs and potential privacy liabilities (e.g., by adding more identifying matching fields), it 
was important to develop evidence-based prioritizations for future matching enhancements. 
Consequently, evidence derived from assessing the relative improvements in matching accuracy among 
various combinations of both process and algorithm enhancements can inform future national matching 
strategy discussions.   

Using the four gold standard patient matching datasets, we assessed the effectiveness of each 
remaining combination not evaluated in aims 1 and 2 by comparing enhanced matching results to 



baseline matching results derived from the original unmodified dataset and unmodified algorithm. To 
reduce the computational and analytical burden, we excluded any best practice recommendations and 
algorithm enhancement combinations from aims 1 and 2 that fail to show significant improvements in 
accuracy measures above baseline. 

Research Design. We evaluated matching accuracy improvements resulting from implementing the 
three best-practice policy recommendations and the four novel matching algorithm innovations using 
sensitivity, specificity, PPV, and AUC. Using the four gold standard patient matching datasets, we 
assessed the effectiveness of combined process and algorithm enhancements by comparing enhanced 
matching results to baseline matching results derived from the original unmodified FS algorithm and 
unmodified gold-standard data sets. Table 2 highlights the specific analyses for Aim 3, where data 
enhancements (‘D’) and matching algorithm enhancements (‘A’) were combined. Each of the 105 
matching enhancement combinations that exhibited significant accuracy improvements in prior aims 
were applied to the four gold standard matching datasets, for a total of up to 420 matching analysis 
datasets. We performed four accuracy analyses (sensitivity, specificity, PPV and AUC) per dataset for a 
total of up to 1,680 analyses. 

Analysis. We measured the effect of combined process and technical matching enhancements on 
patient matching using sensitivity, specificity, PPV, and AUC. Sensitivity, specificity, and PPV were 
evaluated using proportions and 95% confidence intervals. To account for the clustering effect of 
multiple methods applied to the same record pair and assess the effects of individual and combined 
enhancements on matching performance, we performed a marginal logistic regression using generalized 
estimating equations54,55 . For each metric we included main effects, two-way interactions, and three-
way interactions of the enhancements in the model to allow differential effects of a factor as other 
factors vary. The standard errors of the accuracy measures were calculated using the robust sandwich 
variance estimation methods. The point estimate and the 95% confidence interval of the AUC, as well as 
the comparison of multiple AUCs, were performed using a nonparametric approach56 . Comparison of 
these accuracy metrics between a) the unmodified FS algorithm and the four baseline gold standard 
data sets and b) the up to 105 matching enhancement combinations was performed using a multiple 
comparison approach with a Bonferroni adjustment. 

Sample Size & Power. Sample sizes for the four gold standard record matching datasets ranged from 
11,000 to 17,000. These sample sizes provided at least 80% power to detect a minimum of 2% difference 
in the AUCs of two correlated ROC curves, assuming one AUC is 80% and the other is at least 82% and 
the prevalence of true matches lies within the range of 5% to 95%, commonly seen in record linkage 
applications. These two ROC curves were derived based on the two matching algorithms using 
combinations of the four enhancements. We assumed a moderate correlation of 50% between matching 
status determined by the two matching algorithms, recognizing that the power increases as the 
matching algorithms produces more correlated results. 

Results 
Token Frequency 
We found that incorporating token frequency information into the matching process can increase match 
accuracy, particularly when the quality of matching field data (e.g., data completeness, discriminating 
power) is suboptimal. Practitioners should consider incorporating field frequency into the matching 
process when correlating with incomplete or low-discriminating data. 



Conditional Dependence 
We examined different approaches to address conditional dependence (underlying correlation between 
agreeing fields). Accounting for dependency among the nonmatch class rather than the true match class 
resulted in increased accuracy. Although we hypothesized that accommodating dependency within both 
the match and nonmatch classes would produce superior performance, nonmatch record pairs provide a 
better signal for identifying correlation structures. One should consider including interaction terms for 
nonmatch class fields having a pseudo-R2 of 0.1% or greater. 

Data Standardization 
Data standardization exhibited modest match performance improvement. Data standardization 
eliminates spelling and formatting variations in demographic fields that may cause a missed match. For 
example, the last name of “O’ Brien” would be standardized by uppercasing all letters and removing 
extra spaces to create “O’BRIEN.” The most significant increase in match accuracy resulting from 
standardization was observed for the newborn data set, where data quality was much lower due to 
limited and changing matching identifiers (e.g., given and surname, lack of SSN) around the time of the 
patient’s birth. Data standardization should be considered for data sets containing significant spelling 
and typographical variation to maximize match accuracy. 

Similarity Index 
Incorporating string similarity measures was associated with increased match accuracy. String similarity 
measures compare two strings (e.g., a name, an address) to determine how closely they agree. These 
measures typically produce a value from 0 to 1, where 0 represents no agreement, and 1 represents 
exact agreement between strings. We found that a dichotomized measure with a single threshold 
increased optimal accuracy. Where feasible, we encourage the use of string comparators. 

Missingness 
We evaluated three methods for accommodating missingness: treating missing data as MAR, MNAR, 
and MAD. MAR exhibited a significant match accuracy increase. In the general case, when demographic 
data are missing, the corresponding fields are treated as disagreeing, which results in a lower match 
score and is more likely not to match. The MAR method uses statistical formulas to impute a probable 
value for the field, which enables the field to contribute a partial score to the matching algorithm. We 
strongly recommend incorporating methods for accommodating missing data into match processes 
needing improved performance where practical and feasible. 

Token Selection 
We applied a machine learning method called “decision trees” (specifically an XGBoost decision tree) to 
determine the combination of token fields that would maximize match accuracy. Applying this method 
to a large, heterogeneous clinical data source produced performance metrics (PPV, sensitivity, 
specificity, and F score) above 97%, which indicates that such models can perform well when used with 
high-quality matching data. Additional performance gains may be achieved by applying a more complex 
XGBoost classification model, and we recommend that, though complex, machine learning models may 
significantly match accuracy and should be explored further. 

Generalizability 
The INPC represents a unique in vivo laboratory to evaluate real-world patient matching methods, and 
the demographics of the HIE catchment area closely mirror many of the demographics of the United 
States overall, supporting the generalizability of findings. Fields used for linkage are commonly available 



and include SSN, name (last, first, middle initial), sex at birth, date of birth (day, month, and year), 
telephone number, street address, and ZIP Code. 

Limitations 
Although the data included in this study represent a broad spectrum of healthcare settings, which 
supports the likelihood of generalizability, our analysis used data specific to Indiana health systems. 
Consequently, results may vary in environments with markedly differing demographic data 
characteristics and differing availability of matching fields. For example, the matching approaches 
described may produce more false-positive matches over a larger or different population. 

Future Research 
We seek to understand the performance of matching methods among various racial, ethnic, and other 
demographic subgroups. Increasing attention and concern are directed at algorithmic bias, and 
matching methods are no less susceptible to potential biases. Understanding how match algorithms 
perform among different subgroups is essential to ensuring high-quality research data and 
strengthening consumer trust in the validity of scientific results derived from data integrated via linkage. 

Conclusions 
Ensuring accurate and robust methods for integrating data from several sources for research purposes is 
essential to high-quality innovation and discovery. Through this research we have identified 
opportunities for improving linkage, including pursuing probabilistic (vs heuristic, or rule-based) 
matching methods and incorporating methods for accommodating missingness. Standardization and 
frequency-based approaches may help improve overall matching when working with lower-quality data. 
Finally, more work is needed to determine the performance of these methods among various 
subgroups, including racial and ethnic minorities. 
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