Machine Learning


Machine-Learning Prediction Model for Personalized Urinary Tract Infection Care in Children

Description

The study will develop and implement a validated machine learning model to optimize voiding cystourethrogram timing and use for diagnosing vesicoureteral reflux (VUR) in children, aiming to reduce the significant health and economic impacts of VUR and recurrent febrile urinary tract infections (fUTIs) by standardizing practices, minimizing unnecessary procedures, and ensuring timely diagnosis for those at highest risk, ultimately seeking to prevent renal injury from fUTIs.

Grant Number
K08 HS029526
Principal Investigator(s)

Improving Pediatric Donor Heart Utilization with Predictive Analytics

Description

This study aims to optimize the use of donor hearts for infants and children awaiting heart transplantation by developing predictive models to assess in real-time the potential for transplant success and to evaluate risk. Researchers plan to display these data through intuitive visualizations on a custom-built interface to reduce clinicians’ cognitive burden, enhance decision making confidence, and help ensure the best donor match for pediatric patients.

Grant Number
R21 HS029548
Principal Investigator(s)

Identifying Sepsis Phenotypes Associated with Antibiotic-Resistant Pathogens Using Large Language Models and Machine Learning

Description

This research uses large language models and machine learning to retrospectively analyze electronic health records of patients with suspected sepsis and identify patterns in treatment outcomes, with the goal of shaping future clinical guidelines that help doctors select the most effective antibiotics for each patient, reduce unnecessary use of broad-spectrum antibiotics, lower the risks of drug resistance, and ultimately improve patient outcomes.

Grant Number
K08 HS030118
Principal Investigator(s)

A Machine Learning Health System to Integrate Care for Substance Misuse and HIV Treatment and Prevention Among Hospitalized Patients - Final Report

Principal Investigator

External validation of a commercial artificial intelligence algorithm on a diverse population for detection of false negative breast cancers.

Principal Investigator

Effectiveness of a digital health intervention leveraging reinforcement learning: Results from the Diabetes and Mental Health Adaptive Notification Tracking and Evaluation (DIAMANTE) randomized clinical trial.

Principal Investigator

Cluster analysis driven by unsupervised latent feature learning of medications to identify novel pharmacophenotypes of critically ill patients.

Principal Investigator

Machine learning based prediction of prolonged duration of mechanical ventilation incorporating medication data.

Principal Investigator