Primary Care


Complexity, Incidence, and Costs Related to Delayed Diagnosis of Venous Thromboembolism in Urban and Rural Primary and Urgent Care Settings

Description

This research aims to improve the early detection of venous thromboembolism in primary and urgent care by using mixed methods (stakeholder interviews and surveys, electronic health records, and machine learning) to better understand missed and delayed diagnoses, identify risk factors, and develop tools to enhance patient safety.

Grant Number
R01 HS030221
Principal Investigator(s)

Assessing the Effects of EHR Optimization Interventions in Primary Care

Description

This research evaluates the adoption and impact of three electronic health record-optimization interventions—scribes, advanced team-based inbox management, and artificial intelligence-assisted messaging support—on primary care physicians' time, wellbeing, and patient outcomes, with the goal of identifying effective strategies to improve physician satisfaction and care quality and to reduce healthcare costs.

Grant Number
R01 HS029470
Principal Investigator(s)

Machine-Learning Prediction Model for Personalized Urinary Tract Infection Care in Children

Description

The study will develop and implement a validated machine learning model to optimize voiding cystourethrogram timing and use for diagnosing vesicoureteral reflux (VUR) in children, aiming to reduce the significant health and economic impacts of VUR and recurrent febrile urinary tract infections (fUTIs) by standardizing practices, minimizing unnecessary procedures, and ensuring timely diagnosis for those at highest risk, ultimately seeking to prevent renal injury from fUTIs.

Grant Number
K08 HS029526
Principal Investigator(s)

A Novel Patient-Facing Mobile Platform to Collect and Implement Patient-Reported Outcomes and Voice Biomarkers in Underserved Adult Patients with Asthma

Description

This research will enhance an existing mobile platform to support self-management and shared decision making for those with asthma. Researchers will use patient-reported outcomes and calculate a Respiratory Symptoms Risk Score using voice biomarkers, with the aim of improving outcomes. 

Grant Number
R21 HS028892
Principal Investigator(s)